Tool to calculate the emission factor for an electricity system (Grid Tool)

Training Workshop and Public Consultation on Developing Standardized Baseline-Grid Emission Factor

Agenda

- 1. What is the Grid Emission Factor (GEF)
- 2. Use of GEF
- 3. Concept of the 'Grid Tool'
- 4. Operating Margin EF
- 5. Build Margin EF
- 6. Combined Margin EF
- 7. Application of the Grid Tool
- 8. References

What is the Grid Emission Factor (GEF)

What is the Grid emission factor (GEF) ?

- Represents baseline emission intensity (tCO₂/MWh) of an electricity system (grid)
 - Determines baseline emissions of a project:
 - supplies electricity to a grid renewable energy
 - results in savings of grid electricity energy efficiency

Use of GEF

Use of GEF

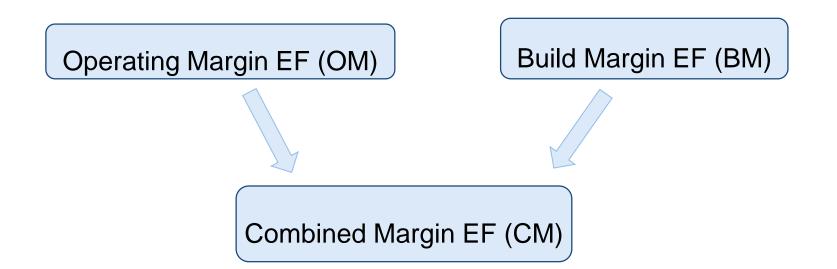
- 1. **Design:** energy planning
- 2. Develop: implementation of energy plans
- **3. Analyze:** are national targets met?
- 4. Evaluate: are we on the right path? (NDC cycle)

Analysis (4) based on:

- Grid emission factor
- ➤ GHG emissions per sector
- GHG emissions per capita

- Mandatory application CDM project activities and PoA
- □ <u>Voluntary</u> used by some IFIs Climate (Carbon) Finance
- Voluntary in Nationally Appropriate Mitigation Actions (NAMAs)

Concept of the Grid Tool


Concept of the Grid Tool

Project mitigation effect (emission reductions) – displacement or avoidance:

- Operating Margin EF existing power plants electricity generation
- Build Margin EF Construction of prospective power plants

Concept of the Grid Tool

Operating Margin EF

Methods to determine Operating Margin

Depending upon grid composition and data availability:

- 1. Dispatch Analysis OM
- 2. Simple Adjusted OM
- 3. Simple OM
- 4. Average OM

Average OM

Operating Margin: Average OM

Average emission rate of all power plants serving the grid

- Data required:
 - 1. Annual power generation by each power plant <u>or aggregated</u>
 - 2. Annual fuel consumption by each power plant or aggregated
 - 3. Fuel type and technology

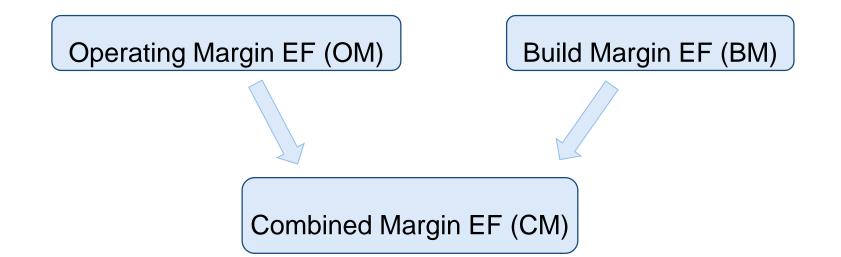
Build Margin

Build Margin represents cohort of power plants that would have been built

Cohort consists of:

- □ Five recently built power plants or
- Recently built power plants that supplied 20 per cent of generation in the last year

Data required:


- 1. Date of commissioning
- 2. Annual power generation by each power plant
- 3. Annual fuel consumption by each power plant or
- 4. Fuel type and technology

Combined Margin

Combined Margin EF

 $CM = w \times OM + y \times BM$ (w +y =100%)

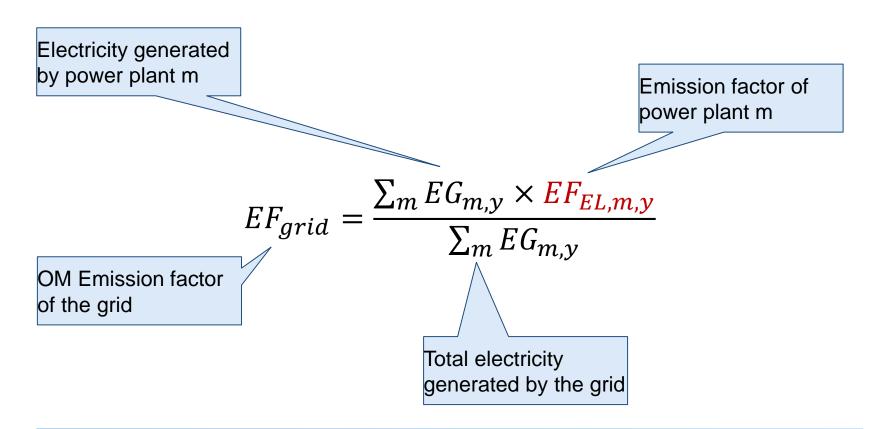
w = 75% and y= 25% (Wind & Solar)

w = 50% and y= 50% (Other projects - hydro, fossil fuel)

Step 1: Identify the relevant electricity systems

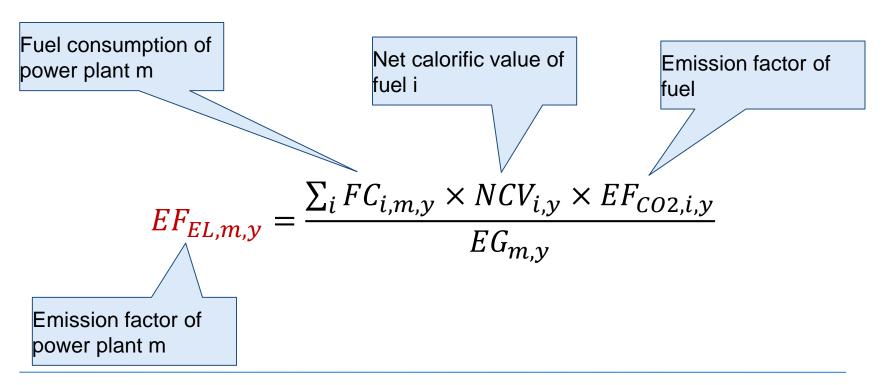
Step 2: Choose whether to include off-grid power plants in the project electricity system

Step 3: Select a method to determine the operating margin (OM)

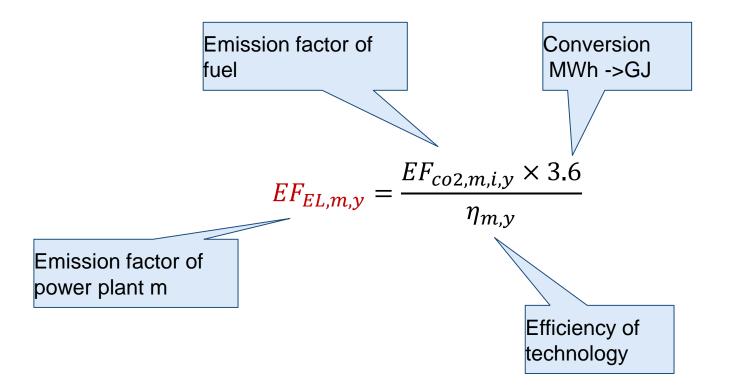

Step 4: Calculate OM emission factor according to the selected method

Step 5: Calculate the build margin (BM) emission factor

Step 6: Calculate the combined margin (CM) emission factor



Step 4: Calculate the operating margin emission factor according to the selected method



Step 4: Calculate the operating margin emission factor according to the selected method

Step 4: Calculate the operating margin emission factor according to the selected method

References

References

Tool to calculate the emission factor for an electricity system: https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-07-v5.0.pdf/history_view

NDC registry: <u>http://unfccc.int/focus/ndc_registry/items/9433.php</u>

Standardized baselines (GEF approved by UNFCCC): https://cdm.unfccc.int/methodologies/standard_base/index.html

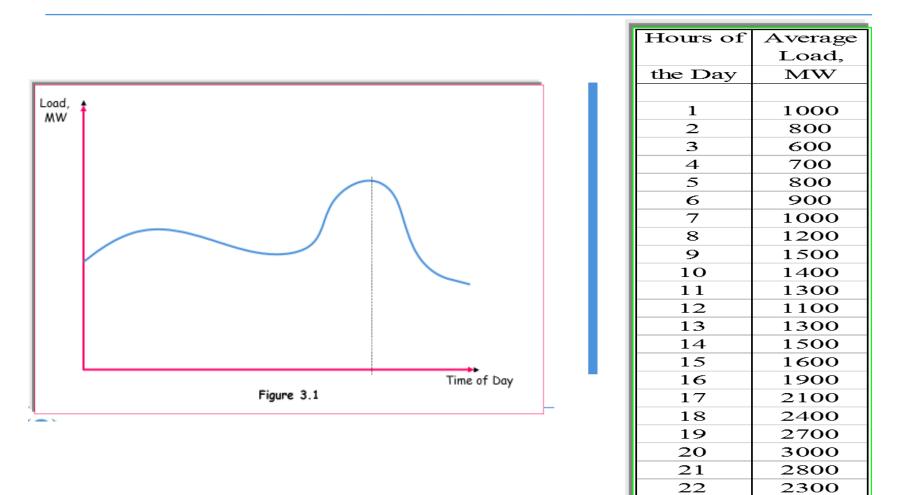
CDM projects database: <u>https://cdm.unfccc.int/Projects/projsearch.html</u>

Institute for Global Environmental Strategies. List of GEFs: https://pub.iges.or.jp/pub/list-grid-emission-factor

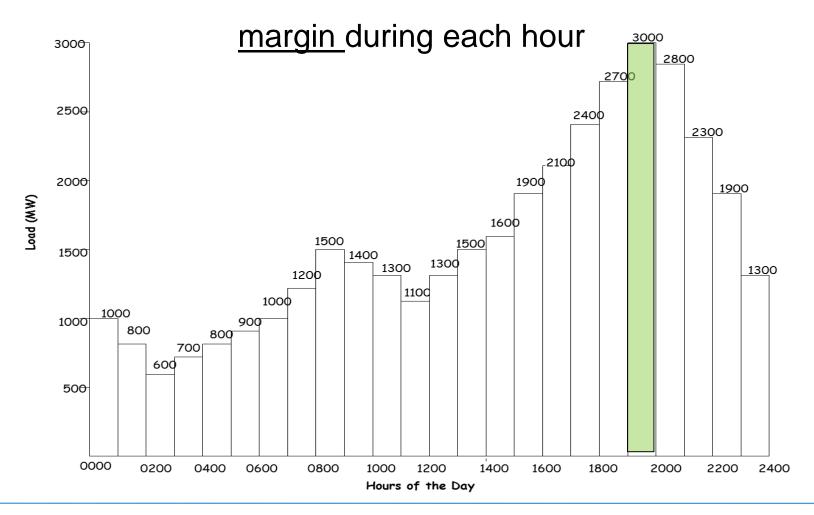
NAMA registry: http://unfccc.int/cooperation_support/nama/items/7476.php

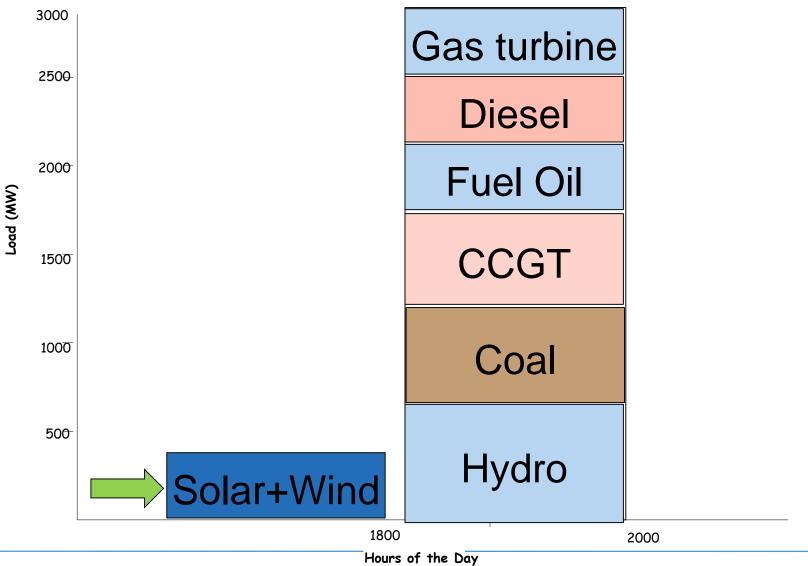
IPCC Guidelines for National Greenhouse Gas Inventories: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html

Approaches to determine emission factor for Off-grid/Isolated system


Extra slides

Dispatch Analysis OM


Chronological representation of Load


Operating Margin: Dispatch data analysis OM

Emission factor of the grid power units that are at the

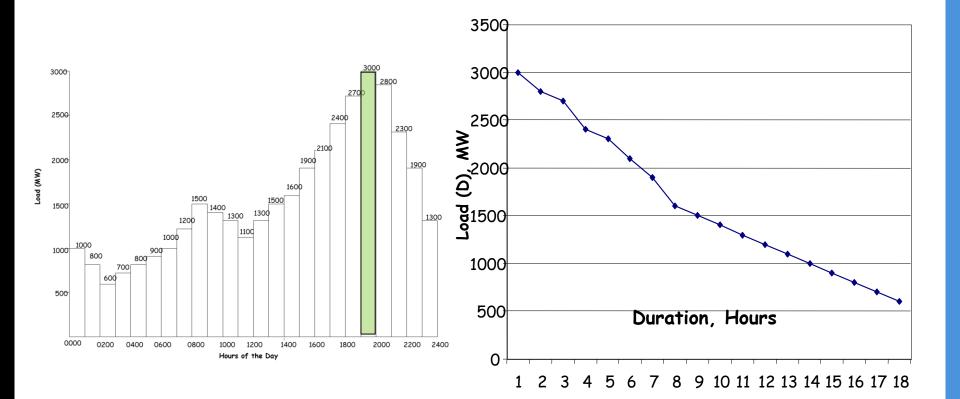
Operating Margin: Dispatch data analysis OM

Operating Margin: Dispatch data analysis OM

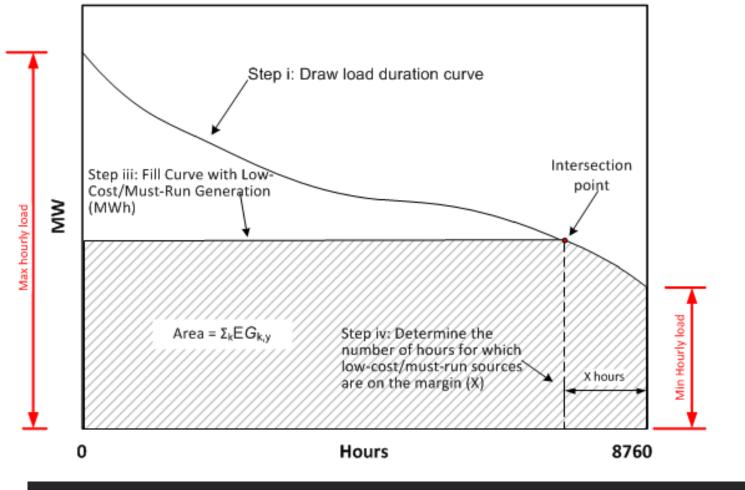
displaces

Gas turbine

Hourly emission factor = EF of Gas Turbine


Data required:

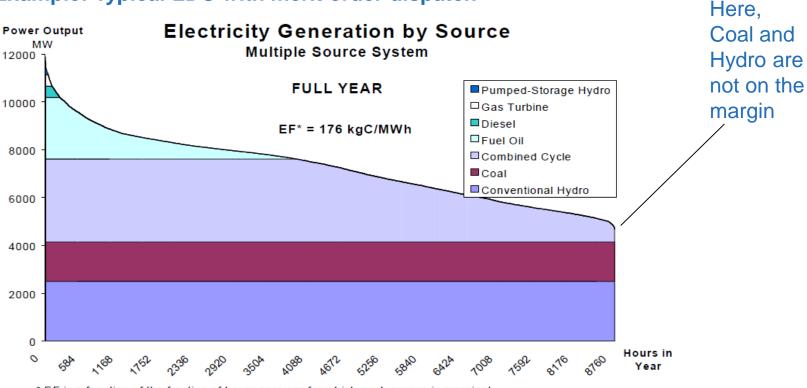
- 1. hourly power generation of each power plant
- 2. hourly fuel consumption of each power plant


Load Duration Curve in the context of Grid Tool

Construct LDC: Arranging the load in descending order

LDC- in the context of the grid tool

Low cost must run units: RETs, CHP with low marginal cost of electricity gen.

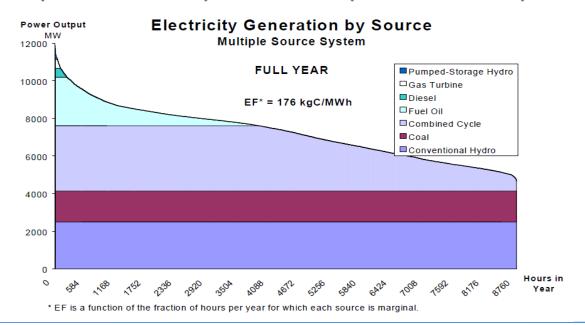


LDC and Dispatch data analysis

□ Emission factor is determined based on the grid power units that are

actually dispatched at the margin during each hour

Example: Typical LDC with merit order dispatch


* EF is a function of the fraction of hours per year for which each source is marginal.

Note: Only applicable to grid system with merit order dispatch

Marginal Power Source Displacement

	Hours of Source	Share of	Emissions	Weighted Emissions Factor	
	being marginal	Marginal Hours	Factor		
	hours	%	kgC/MWh	kgC/MWh	
Conv. Hydro	0	0%	0	0	
Coal Thermal	0	0%	260	0	
Combined Cycle	4889	56%	137	76	
Fuel Oil Thermal	3650	42%	225	94	
Diesel Generation	117	1%	288	4	
Gas Turbine	58	1%	257	2	
Pump Stor. Hydro	46	1%	0	0	
Sum	8760	100%		176	

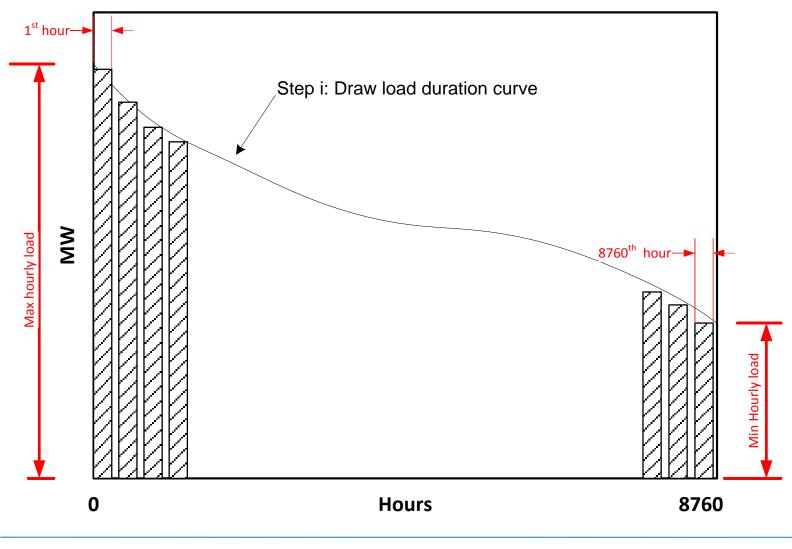
Simple Adjusted OM

SDM Programme

Operating Margin: Simple Adjusted OM

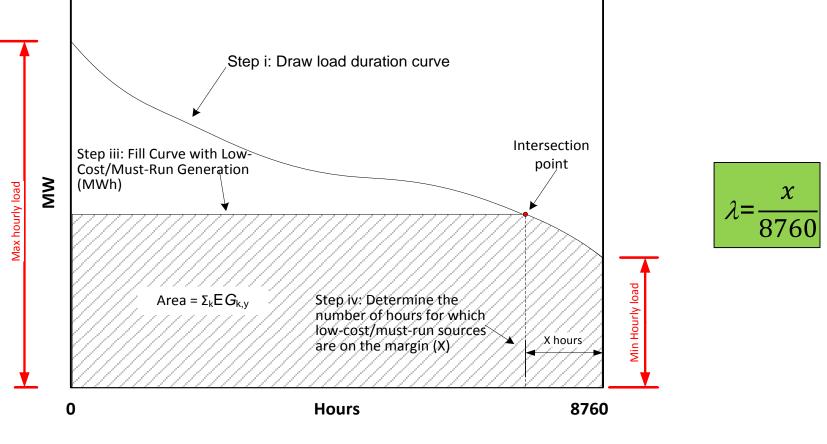
Emission factor based on share and EF of:

- 1. low cost/must run (LCMR) generation
- 2. Load following generation (other)


$$EF_{grid} = (1 - \lambda_y) \times EF_{other} + \lambda_y \times EF_{LCMR}$$

$$\lambda = \frac{x}{8760}$$

X - electricity demand met by LCMR only (hours)



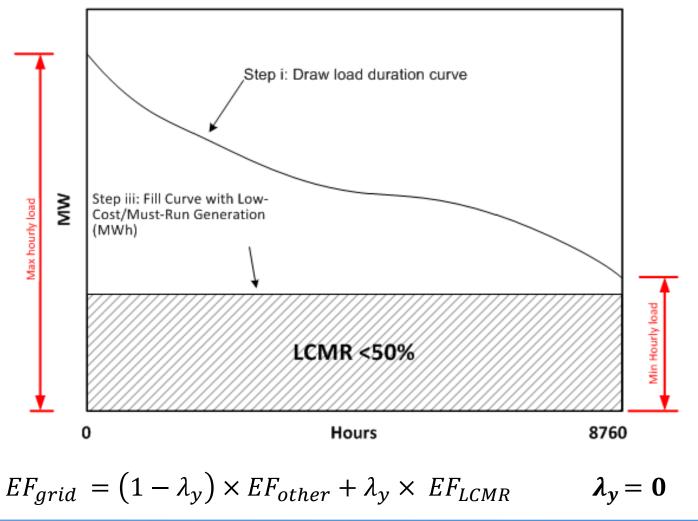
Operating Margin: Simple Adjusted OM

Operating Margin: Simple Adjusted OM

 $EF_{grid} = (1 - \lambda_y) \times EF_{other} + \lambda_y \times EF_{LCMR}$

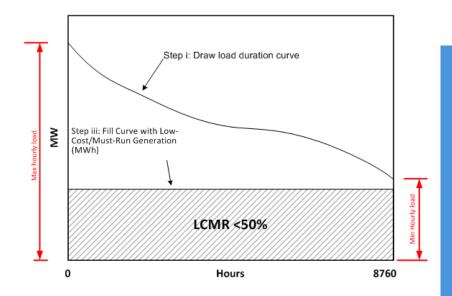
Data required:

- 1. Hourly load of the grid
- 2. Annual power generation by each power plant
- 3. Annual fuel consumption by each power plant or
- 4. Fuel type and technology


Simple OM

SDM Programme

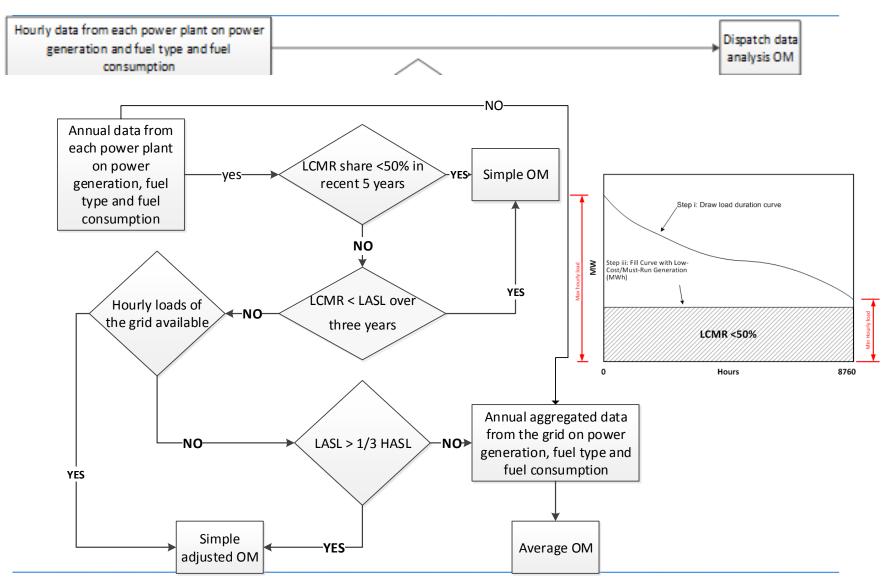
Operating Margin: Simple OM


Simplified case of simple adjusted OM

Operating Margin: Simple OM

- Share of low cost/must run
 (LCMR) generation < 50%
- or
- The average LCMR load
 (MW) less then lowest annual system load

LCMR generation can be <u>excluded</u> from GEF determination



Data required:

- 1. Annual power generation by each power plant or aggregated
- 2. Annual fuel consumption by each power plant <u>or aggregated</u>
- 3. Fuel type and technology
- 4. Annual total power generation over the last 5 years
- 5. Annual total power generation by LCMR over the last 5 years


Recap: Which OM methods to use When

Step 1: Identifying the relevant electricity systems:

- 1. Project electricity system
- 2. Connected electricity systems
- 3. Transmission constraints between project and connected systems

Source: Global Energy Network Institute

Step 2: Choose whether to include off-grid power plants in the project electricity system

Off-grid power plant/unit - supplies electricity to <u>specific consumers</u> through a power line not used by any other power plants (back-up unit for emergencies, e.g. blackouts)

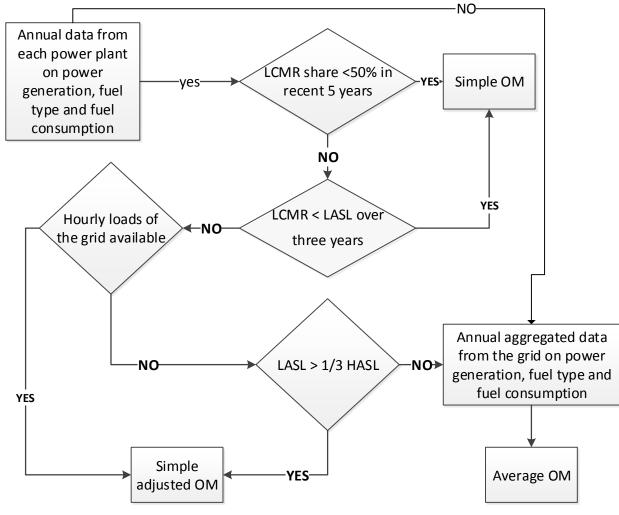
□ specific consumers are connected to the grid

□ If 'off-grid' included :

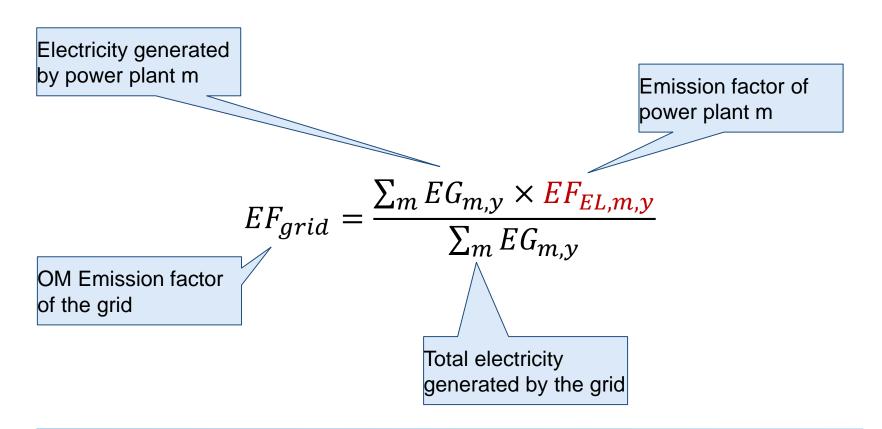
Off-grid units are identified through survey

or if in LDC/SIDSs

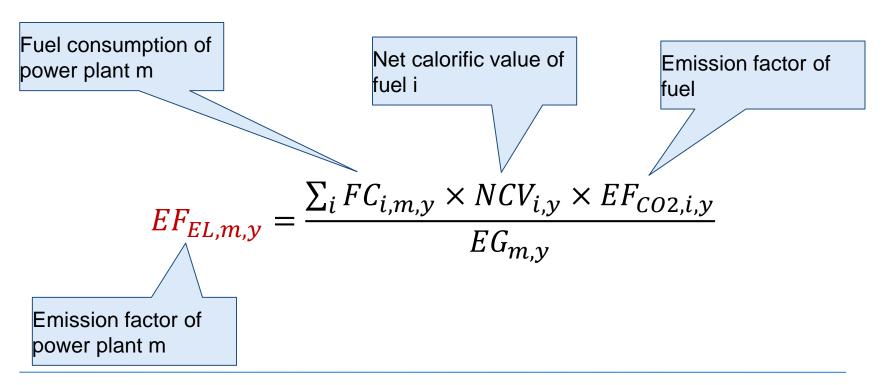
Simplified procedure applies



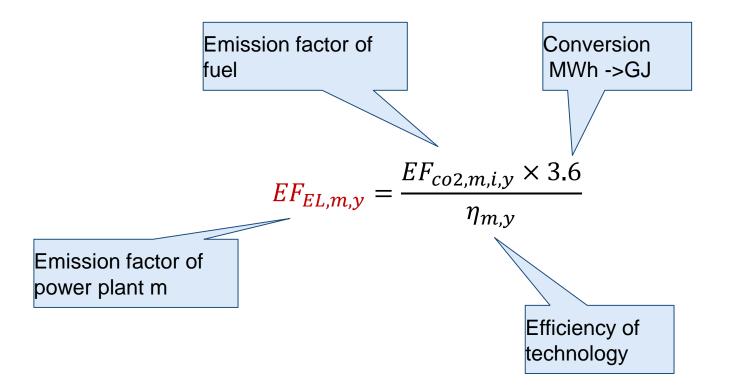
Step 3: Select a method to determine the operating margin (OM)



Step 3: Select a method to determine the operating margin (OM)



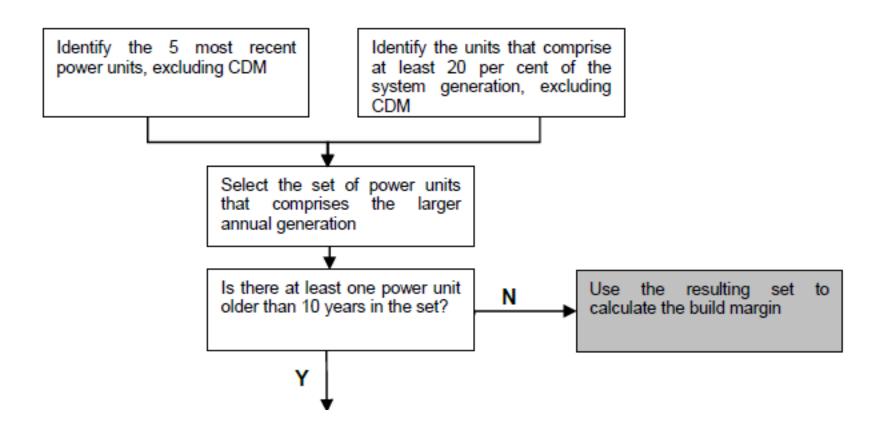
Step 4: Calculate the operating margin emission factor according to the selected method



Step 4: Calculate the operating margin emission factor according to the selected method

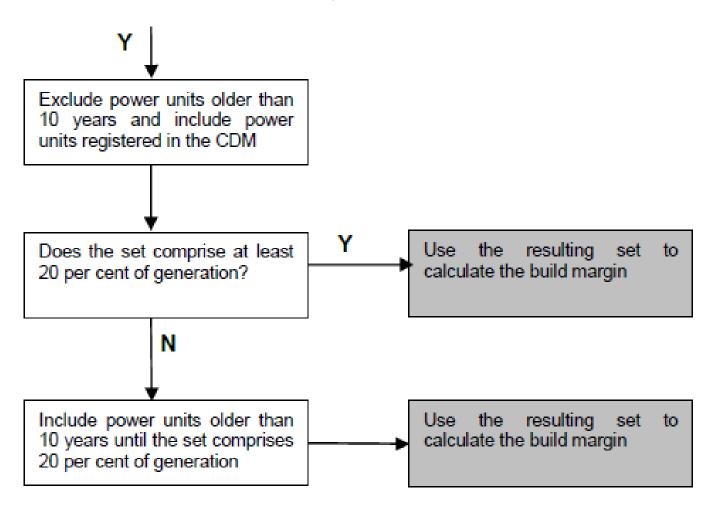
Step 4: Calculate the operating margin emission factor according to the selected method

Step 4: Calculate the operating margin emission factor according to the selected method

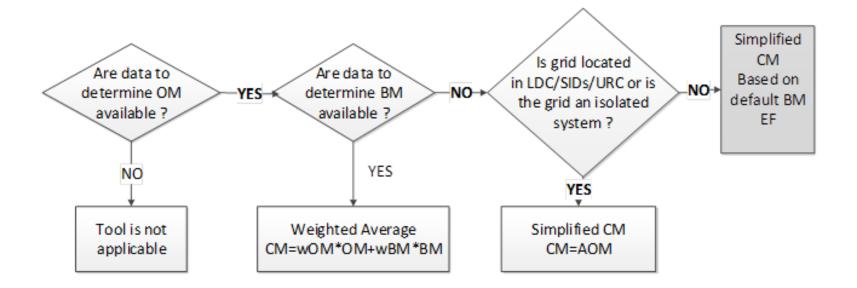

Data vintage:

- 1. <u>Ex ante option</u> 3-year generation-weighted average
- 2. <u>Ex post option</u> EF updated annually

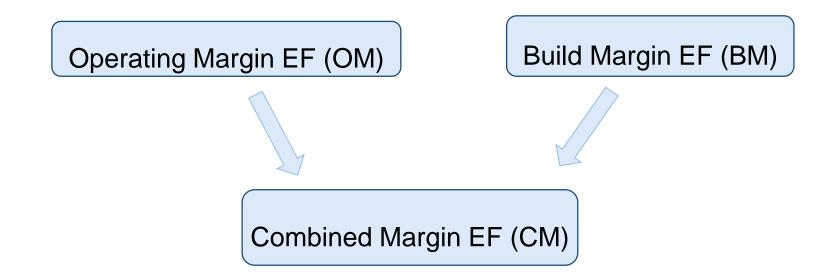
- Simple OM, Simple Adjusted OM, Average OM any data vintage
- Dispatch data analysis OM <u>ex post</u>



Step 5: Calculate the build margin (BM) emission factor



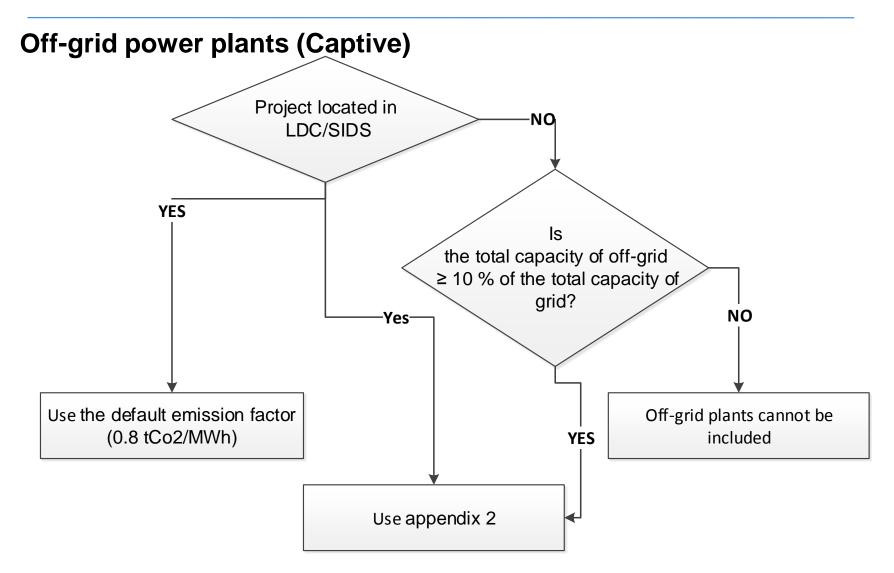
Step 5: Calculate the build margin (BM) emission factor



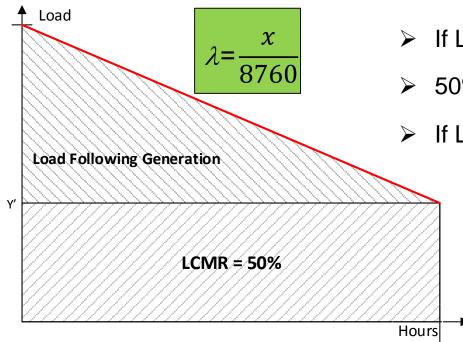
Step 6: Calculating the combined margin (CM) emission factor

Step 6: Calculating the combined margin (CM) emission factor

 $CM = w \times OM + y \times BM$ (w +y =100%)


w = 75% and y= 25% (Wind & Solar)

w = 50% and y= 50% (Other projects - hydro, fossil fuel)



SDM Programme

Simple Adjusted OM

Condition:

If Min load= 33% of Max load over 5 years

► If LCMR <50%, then $\lambda_y = 0$

> 50%< LCMR< 100% λ_{y} = default values

If LCMR = 100%, then
$$\lambda_y$$
 =1

share of LCMR	lambda
99.87% to100.00%	1
99.50% to 99.87%	0.95
98.87% to 99.50%	0.9
97.98% to 98.87%	0.85
96.85% to 97.98%	0.8
95.47% to 96.85%	0.75
93.83% to 95.47%	0.7
91.94% to 93.83%	0.65
89.80% to 91.94%	0.6
87.41% to 89.80%	0.55
84.76% to 87.41%	0.5
81.86% to 84.76%	0.45
78.72% to 81.86%	0.4
75.32% to 78.72%	0.35
71.66% to 75.32%	0.3
67.76% to 71.66%	0.25
63.60% to 67.76%	0.2
59.20% to 63.60%	0.15
54.54% to 59.20%	0.1
50% to 54.54%	0.05
0% to 50%	0

Simplified Combined Margin EF

- <u>Conditions</u>:
 - Data for BM is not available
 - RE share $\leq 20\%$
- Use Default BM EF depends on availability of NG
 - BM = 0.326 tCO2/MWh (no NG used), else
 - BM = 0.568 tCO2/MWh
- **Determine Simplified CM** = $w \times OM + y \times BM$ (w + y = 100%)

w = 75% and y= 25% (Wind & Solar); w = 50% and y= 50% (Other projects - hydro, fossil fuel

Simplified Combined Margin EF

- <u>Conditions</u>:
 - Data for BM is not available
 - RE share $\geq 20\%$
- Apply default BM EF = 0
- **Determine Simplified CM** = $w \times OM + y \times BM$ (w + y = 100%)

w = 75% and y = 25% (Wind & Solar); w = 50% and y = 50%(Other projects - hydro, fossil fuel

Simplified Combined Margin EF [LDCs/SIDS/ URCs]

* URC: Countries < 10 registered CDM projects

- <u>Conditions</u>:
 - Data for BM is not available
 - If LDCs/SIDS/ URCs
- **Apply** weight for BM= 0
- Determine Simplified $CM = w \times OM + y \times BM$ (w +y =100%)
 - w = 100% and y= 0%
 - OM = Average OM

1. Go to menti.com 2. Type Code

SDM Programme

Data requirements

SDM Programme

KEY DATA REQUIREMENTS TO DETERMINE GEF

	Dispatch data OM	Simple adjusted OM	Simple OM	Average OM	Build margin
Power generation per plant		\checkmark	\checkmark		✓
Power generation aggregated			✓	✓	
Fuel consumption per plant		\checkmark	\checkmark		\checkmark
Fuel type and technology		\checkmark	~		\checkmark
Fuel consumption aggregated			✓	✓	
Hourly power generation and fuel consumption per plant	✓				
Hourly load of the grid		\checkmark			
Date of commissioning of power plants/units					✓

Electricity generation (MWh)

- Net electricity generation by power plant provided by utility, or government, other official publication
- Hourly values (dispatch analysis OM)
- One or three most recent year (Simple OM, Simple adjusted OM, Build Margin)

Fuel consumption (mass or volume unit)

- Fuel consumed by power plant provided by utility, or government, other official publication
- Hourly values (dispatch analysis OM)
- One or three most recent year (Simple OM, Simple adjusted OM, Build Margin)

Net calorific value (GJ/mass or volume unit)

Source:

- Fuel supplier
- Regional or national average values
- IPCC default values (Table 1.2 of Chapter 1 of Vol. 2 (Energy) of the 2006 IPCC Guidelines on National GHG Inventories)

CO2 emission factor of fuel (GJ/mass or volume unit)

Source:

- Fuel supplier
- Regional or national average values
- IPCC default values (table 1.4 of Chapter1 of Vol. 2 (Energy) of the 2006 IPCC Guidelines on National GHG Inventories)

1. Go to menti.com 2. Type Code

Recurring issues on development of grid emission factor

Common Issues

Delineation of the power system

- Transmission constraints not always being checked properly
- Shared energy resources (e.g., hydro)
- Name convention for power units is not consistent

□ Co-generation units

Fuel consumption is not allocated. Leads to enormously high EF

□ Fuel properties

- Sources are not recorded
- Units are not properly converted

Data quality issues and QA/QC aspects

CLEAN DEVELOPMENT MECHANISM

CDM-EB66-A49-GUID

Guideline

Quality assurance and quality control of data used in the establishment of standardized baselines

Version 02.0

Key lessons learned on quality control/quality assurance of data

- <u>No assessment report:</u> No assessment report required for the SBs where no data collection/processing required (e.g. LFG destruction SBs).
- <u>Data templates</u>: Very important for DNA to get converse with. This decides the quality of data collected.
- <u>Stakeholder consultation and transparency:</u> There can be various means adopted for this including direct meetings, inviting written comments, communication through DNA webpage etc.
- <u>QA/QC system:</u> Although recommended to be available in documented form, minimum requirement is that DNA should be able to justify the adherence to quality objectives of QA/QC guideline.
- <u>QC report:</u> QC report is the key for DNA to explain how they comply with QA/QC objectives.

Country	Status	Combined
		margin EF
		(tCO2/MWh)
Belize	approved	0.1521
The Dominican Republic	approved	0.4887
Grenada, Grenada	approved	0.634
Grenada, Carriacou	approved	0.675
Grenada, Petit Martinique	approved	0.890
St Lucia	WIP	
Antigua and Barbuda	WIP	
St Vincent and Grenadines	WIP	
Haiti	WIP	

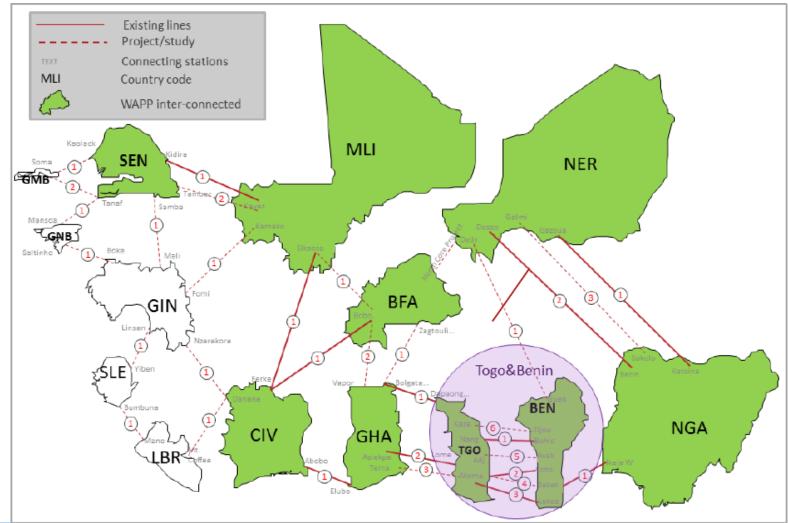
Grenada. Data

- Three islands
 - o Grenada
 - o Carriacou
 - o Petit Martinique
- Three isolated grids
- One diesel per island
- Fuel consumption
- Electricity generation
- Commissioning dates <u>not available</u>

Grenada. Analysis

- Delineation of the system: Three islands three GEFs
- Method for OM:
 - One power plant dispatch analysis OM not applicable
 - \circ No RE LCMR =0%
 - Simple OM or Average OM applies
- Data for BM not available
- Country status SIDS: simplified option for CM applies

Grenada. Application


Power Plant m	Electric System (Island)	Year	Electricity Generated (GWh) A	Fuel consumed (Gg) B	Fuel type	NCV fuel (TJ/Gg) C	EF _{CO2, diesel} (tCO ₂ e/TJ) D	$EF_{EL, Queen's Park, y}$ (tCO_2e/MWh) $E = B x C x D / A$	OM 2010-2012 (average)
	2010 193.4737 40.23 Diesel		Diesel	42.60	72.60	120,909			
Queen's Park Power Plant Grenada		2011	188.8839	39.05	Diesel	42.28	72.60	117,359	0.634
		2012	185.3488	37.53	Diesel	42.40	72.60	112,799	

OM EF = 0.634 tCO2/MWh

Simplified CM = 100%*OM EF+0% * BM EF = 0.634 tCO2/MWh

West African Power Pool. Data

West African Power Pool. Data

Table 1. Generating (available) capacity (MW) within the WAPP members $^{\rm \circ}$

Country	Oil	Coal	Gas	Hydro	Total
Burkina Faso	146	0	0	23	169
Cote d'Ivoire	0	0	765	585	1,350
Gambia	49	0	0	0	49
Ghana	700	0	180	1,380	2,260
Guinea	19	0	0	95	114
Guinea-Bissau	4	0	0	0	4
Liberia	13	0	0	0	13
Mali	114	0	20	153	287
Niger	15	32	20	0	67
Nigeria	0	0	3,858	1,358	5,216
Senegal	395	0	49	68	512
Sierra Leone	44	0	0	56	100
Togo/Benin	57	0	0	65	122
Total	1,410	32	4,892	3,760	10,094

West African Power Pool. Data

Table 5. Overview of the existing interconnected transmission lines in the WAPP (WAPP Secretariat 2014)¹⁷

Country 1	Country 2	Line Voltage in kV	Line Capacity in MW (Aggregated)
Nigeria	Niger	132 x 2	169
Nigeria	Togo & Benin	330	686
Ghana	Togo & Benin	161 x 2	300
Ghana	Cote d'Ivoire	225	327
Cote d'Ivoire	Burkina Faso	225	327
Cote d'Ivoire	Mali	225	327
Burkina Faso	Niger	330	637
Mali	Senegal	225	100

		lvory	Coast	Ni	ger	М	ali	Sen	egal	Burkin	a Faso	Benin	& Togo
		line	condition										
			of 10%										
		capacity	from the										
			tool										
	MW in 2012	(MW)	(Y/NO)										
Nigeria	5507.00			169	Y							686	Y
Ghana	550.00	327	Y									300	Y
Ivory Coast	1421.00					327	Y			327	Y		
Burkina Faso	173.75			637	Y								
Benin	0.00												
Niger	61.31												
Mali	417.45							100	Y				
Senegal	585.10												
Тодо	146.38												
Benin & Togo	109.00												

West African Power Pool. Application

Table 6. WAPP trade analysis; Transmission constraint check within the WAPP interconnected network 2012-2013

Export	Line	Import To	Line Voltage	Maximum load		nsmission Wh)		itional Factor	constra	nission int check 10%)
From	No.		(kV)	capacity (MW)	2012	2013	2012	2013	2012	2013
NGA	1	NER	132	40	151,963	160,953	43%	46%	ОК	ОК
NGA	2	NER	132	80	468,311	383,764	67%	55%	ОК	ОК
NGA	1	BEN/TGO	330	630	1,184,352	1,374,97 <mark>6</mark>	21%	25%	ОК	ОК
NER	1	NGA	132	40	0	0	0%	0%	ОК	ОК
NER	2	NGA	132	80	0	0	0%	0%	ОК	ОК
TGO/BEN	1	NGA	330	630	0	0	0%	0%	ОК	ОК
TGO/BEN	1	GHA	34	30	0	0	0%	0%	ОК	ОК
TGO/BEN	2	GHA	2x161	300	0	0	0%	0%	ОК	ОК
GHA	1	TGO/BEN	34	30	0	0	0%	0%	ОК	ОК
GHA	2	TGO/BEN	2x161	300	599,765	560,007	23%	21%	ОК	ОК
GHA	1	CIV	225	220	54,275	616,377	3%	32%	ОК	ОК
BFA	1	CIV	225	121	0	0	0%	0%	ОК	ОК

	2009	2010	2011	2012	2013	AVG
Total WAPP	32,308,569	37,511,738	40,325,218	43,815,473	43,456,615	39,483,523
LCMR (GWh)	10,918,990	10,310,250	9,819,152	9,647,729	9,124,477	9,964,119
Share of LCMR (%)	33.80%	27.49%	24.35%	22.02%	21.00%	25.24%
5yr average Low cost / must run:	25.24%	Simple ON	1Possible?	YES		

West African Power Pool. Application

213 power plants/units for 2013

Years	2011	2012	2013	Period 2011-2013
WAPP Connected Total Yearly				
Energy Production for OM	30,506,066	34,167,745	34,332,138	99,005,949
WAPP Connected Total Yearly				
emissions for OM (tCO2)	17,031,115	19,233,002	19,105,598	55,369,714
WAPP Connected Year Specific				
Operating Margin (Simple OM)	0.5583	0.5629	0.5565	
WAPP Connected Yearly Share of				
generation 2010-2013	30.81%	34.51%	34.68%	100.00%
Weighted Simple OM				0.5593

39,072,991	
SET 5 units	SET 20%
2,099,784	7,957,852
792,914	4,494,026
0.3776	0.5647
0 56/17	
	SET 5 units 2,099,784 792,914

Droject types		1st crediting period							
Project types	OM	BM	СМ	Wom	Wbm				
Solar and Wind power project	0.5593	0.5647	0.561	0.75	0.25				
Other renewables	0.5593	0.5647	0.562	0.5	0.5				
Other projects	0.5593	0.5647	0.562	0.5	0.5				

Project types	2nd or 3rd crediting period							
	ОМ	BM	СМ	Wom	Wbm			
Solar and Wind power project	0.5593	0.5647	0.561	0.75	0.25			
Other renewables	0.5593	0.5647	0.563	0.25	0.75			
Other projects	0.5593	0.5647	0.563	0.25	0.75			

